4 research outputs found

    Disorders of Arousal in adults: new diagnostic tools for clinical practice

    Get PDF
    Abstract Disorders of Arousal (DOA) are mental and motor behaviors arising from NREM sleep. They comprise a spectrum of manifestations of increasing intensity from confusional arousals to sleep terrors to sleepwalking. Although DOA in childhood are usually harmless, in adulthood they are often associated with injurious or violent behaviors to the patient or others. Driving motor vehicles, suspected suicide, and even homicide or attempted homicide have been described during sleepwalking in adults. Furthermore, adult DOA need to be differentiated from other sleep disorders such as Sleep-related Hypermotor Epilepsy or REM Sleep Behavior Disorder. Although many aspects of DOA have been clarified in the last two decades there is still a lack of objective and quantitative diagnostic criteria for DOA. Recent advances in EEG analysis and in the semiological characterization of DOA motor patterns have provided a better definition of DOA diagnosis. Our article focuses on the DOA diagnostic process describing accurately the newest DOA clinical, EEG and video-polysomnographic tools in order to aid clinicians in DOA assessment

    EEG Activation Does Not Differ in Simple and Complex Episodes of Disorders of Arousal: A Spectral Analysis Study.

    Get PDF
    Purpose Disorders of arousal (DoA) are characterized by incomplete awakening from NREM sleep, with the admixture of both deep sleep and wake EEG activity. Previous observations suggested that changes in EEG activity could be detected in the seconds preceding DoA episodes. The aims of this work were to characterize the topography of EEG spectral changes prior to DoA episodes and to investigate whether or not behavioral complexity could be predicted by changes in EEG immediately preceding behavioral onsets. Patients and Methods We collected 103 consecutive video-polysomnographic recordings of 53 DoA adult patients and classified all episodes as simple, rising and complex arousal movements. For each episode, a 5-second window preceding its motor onset ("pre-event") and a 60-second window from 2 to 3 minutes before the episodes ("baseline") were compared. Subsequently, a between-group comparison was performed for the pre-event of simpler versus the more complex episodes. Results Spectral analysis over 325 DoA episodes showed an absolute significant increase prior to DoA episodes in all frequency bands excluding sigma, which displayed the opposite effect. In normalized maps, the increase was relatively higher over the central/anterior areas for both slow and fast frequency bands. No significant differences emerged from the comparison between simpler and more complex episodes. Conclusion Taken together, these results show that deep sleep and wake-like EEG rhythms coexist over overlapping areas before DoA episodes, suggesting an alteration of local sleep mechanisms. Episodes of different complexity are preceded by a similar EEG activation, implying that they possibly share a similar pathophysiology

    A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project

    No full text
    Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naive and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development
    corecore